Improved Clinical Outcomes with Omidubicel versus Standard Myeloablative Umbilical Cord Blood Transplantation: Results of a Phase III Randomized, Multicenter Study

Mitchell E. Horwitz, M.D.
Duke University Medical Center
Durham, NC

Guillermo Sanz, M.D.
Hospital Universitario y Politécnico La Fe
Valencia Spain

Gamida Cell
Jerusalem, Israel and Boston MA
Disclosures

• Gamida Cell- institutional research funding
• Magenta- advisory board participation
• Kadmon- advisory board participation
• CareDx- advisory board participation
Umbilical Cord Blood Stem Cell Grafts

• Advantages
 • Readily available stem cells source
 • Tolerance across HLA barriers
 • Nearly 30 year of experience
 • Less chronic GvHD vs. Matched Unrelated donor
 • Eapen M et al Lancet 2010
 • Potent anti-tumor activity
 • Milano F et al NEJM 2016

• Disadvantages
 • Low stem cell dose
 • Delayed hematopoietic recovery
 • Delayed immunologic recovery
 • Increased transplant-related morbidity and mortality
 • Increased resource utilization

Potential Solution

Ex-vivo Expansion Cord Blood Stem Cells
Nicotinamide Alters Metabolic Pathways Mimicking Bone Marrow Endosteum

Importance of Nicotinamide

- Plays a key role in metabolic reprogramming of cells
- Is a master regulator of NAD-related signaling pathways
- Directly involved in control of redox-sensitive enzymes
- Preserves cellular functionality and phenotype during expansion
Phase 3 Registration Study of Omidubicel

Primary Endpoint
Time to neutrophil engraftment

Secondary Endpoints
Platelet engraftment
Infections
Hospitalization

• Cord blood units selected prior to randomization
• Randomization stratified by:
 – Treatment center
 – Disease risk index
 – Age
 – Intent to perform single vs double cord transplant in the control arm
• Minimization algorithm was used to balance prognostic factors in the treatment groups.

• Age 12-65
• High-risk hematologic malignancies
• Eligible for allogeneic bone marrow transplantation
• No matched donor

Enrollment Completed: 12/2019
Day 180 Follow Up Completed: 9/2020
ITT: Intent to Treat; AT: As Treated population: received transplantation with omidubicel or standard cord per protocol.

Patient Disposition

Randomized (n=125)

- Randomized to Omidubicel (n=62)
- Randomized to Standard Cord (n=63)

ITT (N=125)
- Transplanted with Omidubicel (n=52)
- Transplanted with Standard Cord (n=56)

AT (N=108)
Demographics | Intent-to-Treat (ITT) Population

<table>
<thead>
<tr>
<th></th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>30 (48%)</td>
<td>23 (37%)</td>
</tr>
<tr>
<td>Male</td>
<td>32 (52%)</td>
<td>40 (63%)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>40 (13-62)</td>
<td>43 (13-65)</td>
</tr>
<tr>
<td>12-17</td>
<td>8 (13%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>18-39</td>
<td>23 (37%)</td>
<td>23 (36%)</td>
</tr>
<tr>
<td>40-59</td>
<td>27 (44%)</td>
<td>31 (49%)</td>
</tr>
<tr>
<td>60-65</td>
<td>4 (7%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>78.6 (43-134)</td>
<td>77.4 (46-133)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>35 (57%)</td>
<td>37 (59%)</td>
</tr>
<tr>
<td>Black</td>
<td>11 (18%)</td>
<td>9 (14%)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (11%)</td>
<td>10 (16%)</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>9 (15%)</td>
<td>7 (11%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latino</td>
<td>10 (16%)</td>
<td>6 (10%)</td>
</tr>
</tbody>
</table>
Patient and Transplant Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>27 (44%)</td>
<td>33 (52%)</td>
</tr>
<tr>
<td>ALL</td>
<td>20 (32%)</td>
<td>21 (33%)</td>
</tr>
<tr>
<td>MDS</td>
<td>6 (10%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>CML</td>
<td>4 (7%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>3 (5%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Rare Leukemia</td>
<td>2 (3%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Myeloablative Conditioning Regimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBI 1350cGy, Fludarabine, Thiotepa</td>
<td>7(11%)</td>
<td>9(14%)</td>
</tr>
<tr>
<td>TBI 1320cGy, Fludarabine, Cyclophosphamide</td>
<td>24(39%)</td>
<td>21(33%)</td>
</tr>
<tr>
<td>Thiotepa, Busulfan, Fludarabine</td>
<td>27(44%)</td>
<td>28(44%)</td>
</tr>
<tr>
<td>Transplanted off-study</td>
<td>4(6%)</td>
<td>5(8%)</td>
</tr>
<tr>
<td>HLA match (CBU #1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/6</td>
<td>46 (74%)</td>
<td>46 (73%)</td>
</tr>
<tr>
<td>5/6</td>
<td>15 (24%)</td>
<td>16 (25%)</td>
</tr>
<tr>
<td>6/6</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Intended CBU transplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>20 (32%)</td>
<td>21 (33%)</td>
</tr>
<tr>
<td>Double</td>
<td>42 (68%)</td>
<td>42 (67%)</td>
</tr>
</tbody>
</table>
Primary Endpoint
Time to Neutrophil Engraftment (ITT)

<table>
<thead>
<tr>
<th>Intent-to-treat</th>
<th>Median Time to Neutrophil Engraftment (Days)*</th>
<th>95% CI</th>
<th>p<0.001**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N = 62)</td>
<td>12.0</td>
<td>(10.0, 15.0)</td>
<td></td>
</tr>
<tr>
<td>Control (N = 63)</td>
<td>22.0</td>
<td>(19.0, 25.0)</td>
<td></td>
</tr>
</tbody>
</table>

*Patients not transplanted or who do not engraft on/before Day 42 post transplant were assigned to Day 43
**Mann-Whitney test
Day 42 Neutrophil Engraftment
(As-Treated Population N=108)

Median Time to Neutrophil Engraftment
(Days)

<table>
<thead>
<tr>
<th>Treatment Received</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N=52)</td>
<td>10.0 (95% CI: 8, 13)</td>
</tr>
<tr>
<td>Control (N=56)</td>
<td>20.5 (95% CI: 18, 24)</td>
</tr>
</tbody>
</table>
Secondary Endpoint: Platelet Engraftment by Day 42 (ITT Population)

<table>
<thead>
<tr>
<th>Intent-to-treat</th>
<th>Day 42 Cumulative Incidence</th>
<th>Difference in Cumulative Incidence</th>
<th>95% CI</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N = 62)</td>
<td>0.55</td>
<td>0.20</td>
<td>(0.03, 0.35)</td>
<td>0.028</td>
</tr>
<tr>
<td>Control (N = 63)</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Day 100 Platelet Engraftment
As-treated population

Cumulative Incidence of Platelet Engraftment

Treatment Received
- Omidubicel (N=52)
- Control (N=56)

Median Time to Platelet Engraftment (Days) P value
- Omidubicel: 37 (95% CI: 33, 42) p<0.023
- Control: 50 (95% CI: 42, 58)

Days post Transplant

N at risk
- NiCord: 52 52 52 36 22 12 7 5 3 3 2
- UCB: 56 56 56 51 35 23 11 7 7 6 4

83% 73%
Secondary Endpoint: Grade 2-3 Bacterial or Invasive Fungal Infection by 100 Days (ITT Population)

P=0.027

Omidubicel (N=62)
Control (N=63)

57%
37%
Fewer Viral Infections in Recipients of Omidubicel

Incidence of First Grade 3 Viral Infection

- Omidubicel (N=62)
- Control (N=63)

Days Post-Transplant

26% for Omidubicel
10% for Control

No. of Infections

- HUMAN HERPESVIRUS 6
- CYTOMEGALOVIRUS
- BK POLYOMAVIRUS
- HUMAN PARAINFLUENZA VIRUS
- RHINOVIRUS
- ADENOVIRIDAE
- HUMAN RESPIRATORY SYNCYTIAL VIRUS
Secondary Endpoint: Days Alive and Out of the Hospital in the First 100 Days Post-Transplant (ITT Population)

Omidubicel: Median 60.5 days
Control: Median 48.0 days
p = 0.005
Acute GvHD

Grade II-IV Acute GVHD Day 100

- Omidubicel (N=59)
- Control (N=58)

P=0.18

Grade III-IV Acute GVHD Day 100

- Omidubicel (N=59)
- Control (N=58)

P=0.33
Chronic GvHD

All Grades Chronic GVHD 1 Year

Omidubicel (N=59)

Control (N=58)

P=0.57
Non-relapse Mortality and Relapse Incidence (ITT Population)

Non-relapse Mortality

<table>
<thead>
<tr>
<th>Days post-Randomization</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relapse

<table>
<thead>
<tr>
<th>Days post-Randomization</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = 0.09

p = 0.32
Disease-free and Overall Survival (ITT population)

Disease-free Survival

- Probability of Disease-free Survival
 - Days post-Randomization:
 - Omidubicel (N=62)
 - Control (N=63)
 -
P=0.68

Overall Survival

- Probability of Survival
 - Days post-Randomization:
 - Omidubicel (N=62)
 - Control (N=63)
 -
P=0.16

- Disease-free Survival: 73%
- Overall Survival: 62%
Summary and Conclusion

• Myeloablative transplantation with omidubicel results in
 • Faster hematopoietic recovery
 • Fewer early infections
 • Fewer days in the hospital
• No excessive toxicity associated with omidubicel compared to standard umbilical cord blood transplantation
 • Durable engraftment >10yrs (earlier studies)
• Omidubicel should be considered a new standard of care for patients eligible for umbilical cord blood transplantation
Acknowledgments

Co-Investigators

Patrick Stiff
Corey Cutler
Claudio Brunstein
Rabi Hanna
Richard Maziarz
Andrew Rezvani
Nicole Karras
Joseph McGuirk
Gary Schiller
Christine Duncan
Amy Keating
Yasser Khaled
Olga Frankfurt
Victor Aquino
Joanne Kurtzberg

Edward Peres
Dennis Cooper
Leonid Vолодин
Guillermo Sanz
David Valcarcel
Isabel Badell
William Hwang
Liang Pui Koh
Caroline Lindemans
Nelson Hamerschlag
Vanderson Rocha
Juliana Folloni
Ron Ram
Moshe Yeshurun
Robert Wynn
Emma Nicholson

Gamida Cell

Tony Peled, PhD; Founder and Inventor
Einat Galamidi-Cohen, MD
Irit Segalovich

Emmes Corp.

Patients and their families who participated in the Study

Steven Wease
Beth Blackwell

Laurence Freedman, PhD (Statistics)