Improved Clinical Outcomes with Omidubicel versus Standard Myeloablative Umbilical Cord Blood Transplantation: Results of a Phase III Randomized, Multicenter Study

Disclosures

• **Consulting or advisory role**: AbbVie, Amgen, Boehringer-Ingelheim, Celgene/BMS, Helsinn Healthcare, Janssen, Novartis, Roche, Takeda.

• **Speakers’ Bureau**: Takeda.

• **Honoraria**: Celgene/BMS

• **Research funding**: Celgene/BMS, Gamida Cell, Novartis.

• **Travel, accommodations, expenses**: Celgene/BMS, Gilead, Roche, Takeda.
Umbilical cord blood stem cell grafts

Advantages
- Readily available stem cells source
- Tolerance across HLA barriers
- Less chronic GvHD vs. Matched Unrelated donor
- Potent anti-tumor activity

Disadvantages
- Low stem cell dose
 - Delayed hematopoietic recovery
 - Increased transplant-related morbidity and mortality
 - Increased hospital resource utilization
 - Delayed immune recovery

Potential solution
Ex-vivo expansion of cord blood stem cells
Omidubicel

Cellular product consisting of two cryopreserved fractions derived from a single entire cord blood unit (CBU) and thawed at the transplant center immediately before infusion

• Cells obtained after CD133+ selection *ex vivo* expanded for 21 days in the presence of nicotinamide*

• Non-cultured CD133- cells, including T cells

Nicotinamide increases stem and progenitors cells, inhibits differentiation and increases migration, BM homing, and engraftment efficiency while preserving cellular functionality & phenotype
Omidubicel: phase I/II trial (N=36)

Patients: 36 patients with high-risk hematologic malignancies (78% with intermediate/high DRI) undergoing myeloablative conditioning

UCB grafts:
- CD34+ cells infused (median): 6.3 x 10^6/kg

Results
- Very fast hematopoietic engraftment
 - Median time to neutrophil engraftment, days: 11.5*
 - Median time to platelet engraftment, days: 34*
 - Median days alive & out of hospital before day +100: 73*
- Durable long-term hematopoietic engraftment (>10 years)

* P < .001 as compared to 146 similar patients reported to the CIBMTR

Phase 3 trial of omidubicel

Primary Endpoint
Time to neutrophil engraftment

Secondary Endpoints
Time to platelet engraftment
Infections*
Hospitalization**

Cord blood units selected prior to randomization
Randomization stratified by:
- Treatment center
- Disease risk index
- Age
- Intent to perform single vs double cord transplant in the control arm

- Age 12-65
- High-risk hematologic malignancies: AML, ALL, MDS, CML, lymphoma
- Eligible for allogeneic stem cell transplantation
- No matched donor

* Grade 2/3 bacterial or invasive fungal infections by 100 days post transplant
** Days alive and out of the hospital in the first 100 days post transplant
CBU selection criteria

- **Randomization**
 - Omidubicel
 - Standard Cord

- **Production**
 - Omidubicel
 - CF + NF

- **Omidubicel**
 - CBU #1

- **Standard Cord**
 - CBU #1

- **CBU #1**
 - 4-6/6 HLA Match
 - TNC count $\geq 1.8 \times 10^9$ cells
 - TNC dose $\geq 1.5 \times 10^7$ cells/kg
 - CD34$^+$ count $\geq 8 \times 10^6$ cells
 - Red cell and plasma reduced
 - At least 1 allele match at DRB1

- **OR**
 - (per EBMT 2006 CBU selection guidelines)*

- **CBU #1 + CBU #2**

* 5 – 6/6 HLA match: TNC dose $< 2.5 \times 10^7$ cells/kg OR CD34$^+$ dose $< 1.2 \times 10^5$ cells/kg

4 – 6/6 HLA match: TNC dose $< 3.5 \times 10^7$ cells/kg OR CD34$^+$ dose $< 1.7 \times 10^5$ cells/kg
Patient disposition

Randomized (n=125)

(33 centers [US, Europe, South America & Asia])

Randomized to Omidubicel (n=62)

Randomized to Standard Cord (n=63)

Transplanted with Omidubicel (n=52)

Transplanted with Standard Cord (n=56)

ITT (N=125)

AT (N=108)

ITT: Intent to treat; AT: As treated population (received transplantation with omidubicel or standard cord per protocol)
Demographics

<table>
<thead>
<tr>
<th></th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>30 (48%)</td>
<td>23 (37%)</td>
</tr>
<tr>
<td>Male</td>
<td>32 (52%)</td>
<td>40 (63%)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>40 (13-62)</td>
<td>43 (13-65)</td>
</tr>
<tr>
<td>12-17</td>
<td>8 (13%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>18-39</td>
<td>23 (37%)</td>
<td>23 (36%)</td>
</tr>
<tr>
<td>40-59</td>
<td>27 (44%)</td>
<td>31 (49%)</td>
</tr>
<tr>
<td>60-65</td>
<td>4 (7%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>78.6 (43-134)</td>
<td>77.4 (46-133)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>35 (57%)</td>
<td>37 (59%)</td>
</tr>
<tr>
<td>Black</td>
<td>11 (18%)</td>
<td>9 (14%)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (11%)</td>
<td>10 (16%)</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>9 (15%)</td>
<td>7 (11%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latino</td>
<td>10 (16%)</td>
<td>6 (10%)</td>
</tr>
</tbody>
</table>
Patient and transplant characteristics

<table>
<thead>
<tr>
<th>Disease</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>27 (44%)</td>
<td>33 (52%)</td>
</tr>
<tr>
<td>ALL</td>
<td>20 (32%)</td>
<td>21 (33%)</td>
</tr>
<tr>
<td>MDS</td>
<td>6 (10%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>CML</td>
<td>4 (7%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>3 (5%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Rare Leukemia</td>
<td>2 (3%)</td>
<td>2 (3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease Risk Index</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>15 (24%)</td>
<td>15 (24%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>27 (44%)</td>
<td>25 (40%)</td>
</tr>
<tr>
<td>High/Very High</td>
<td>20 (32%)</td>
<td>23 (37%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloablative Conditioning Regimen</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI, Fludarabine, Cyclophosphamide or Thiotepa</td>
<td>31 (50%)</td>
<td>30 (47%)</td>
</tr>
<tr>
<td>Thiotepa, Busulfan, Fludarabine</td>
<td>27 (44%)</td>
<td>28 (44%)</td>
</tr>
</tbody>
</table>
Graft characteristics: HLA match & intended number of CBUs to be transplanted

<table>
<thead>
<tr>
<th>HLA match (CBU #1)</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/6</td>
<td>46 (74%)</td>
<td>46 (73%)</td>
</tr>
<tr>
<td>5/6</td>
<td>15 (24%)</td>
<td>16 (25%)</td>
</tr>
<tr>
<td>6/6</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLA match (CBU #2)</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/6</td>
<td>31 (74%)</td>
<td></td>
</tr>
<tr>
<td>5/6</td>
<td></td>
<td>10 (24%)</td>
</tr>
<tr>
<td>6/6</td>
<td></td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended CBU transplant</th>
<th>Omidubicel (N=62)</th>
<th>Control (N=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>20 (32%)</td>
<td>21 (33%)</td>
</tr>
<tr>
<td>Double</td>
<td>42 (68%)</td>
<td>42 (67%)</td>
</tr>
</tbody>
</table>
Graft characteristics: cell dose

Median CD34+ cell expansion:
130-fold (range 32-233)
Primary endpoint
Time to neutrophil engraftment (ITT population)

<table>
<thead>
<tr>
<th>Intent-to-treat</th>
<th>Median Time to Neutrophil Engraftment (Days)*</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N = 62)</td>
<td>12.0</td>
<td>(10.0 – 15.0)</td>
<td><0.001**</td>
</tr>
<tr>
<td>Control (N = 63)</td>
<td>22.0</td>
<td>(19.0 – 25.0)</td>
<td></td>
</tr>
</tbody>
</table>

*Patients not transplanted or who did not engraft by Day 42 post transplant were assigned Day 43
**Mann-Whitney test
Neutrophil engraftment (treated population, N = 108)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median Time to Neutrophil Engraftment (Days)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel:</td>
<td>10.0 (95% CI: 8, 13)</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Control:</td>
<td>20.5 (95% CI: 18, 24)</td>
<td></td>
</tr>
</tbody>
</table>
Secondary endpoint: Time to platelet engraftment (ITT population)

<table>
<thead>
<tr>
<th>Intent-to-treat</th>
<th>Cumulative Day 42 Incidence</th>
<th>Difference in Cumulative Incidence</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N = 62)</td>
<td>0.55</td>
<td>0.20</td>
<td>(0.03 – 0.35)</td>
<td>0.028</td>
</tr>
<tr>
<td>Control (N = 63)</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Platelet engraftment
(treated population, N = 108)

Median Time to Platelet Engraftment
(Days)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median Time (Days)</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omidubicel (N=52)</td>
<td>37</td>
<td>(33, 42)</td>
<td>0.023</td>
</tr>
<tr>
<td>Control (N=56)</td>
<td>50</td>
<td>(42, 58)</td>
<td></td>
</tr>
</tbody>
</table>

83% vs 73%
Secondary endpoint: Grade 2-3 bacterial or invasive fungal infection by 100 days (ITT Population)

![Graph showing incidence of first grade 2/3 bacterial or invasive fungal infection over days post-transplant. The graph compares Omidubicel (N=62) and Control (N=63) groups. The P-value is 0.027.]

- Omidubicel (N=62) incidence: 37%
- Control (N=63) incidence: 57%
Viral infections (ITT population)

Omidubicel (N=62)
Control (N=63)

P=0.029

Cumulative Incidence of First Grade 3 Viral Infection

Days Post-Transplant
Secondary endpoint: Days alive and out of the hospital in the first 100 days post-transplant (ITT)

- **Omidubicel**: Median 60.5 days
- **Control**: Median 48.0 days
- \(P = 0.005 \)
Acute GvHD

Grade II-IV Acute GVHD Day 100

- Incidence of Acute Grade II-IV GVHD
 - Omidubicel (N=59)
 - Control (N=58)

 \[P=0.18 \]

Grade III-IV Acute GVHD Day 100

- Incidence of Acute Grade III-IV GVHD
 - Omidubicel (N=59)
 - Control (N=58)

 \[P=0.33 \]
Chronic GvHD

All Chronic GVHD at One Year

P=0.57
Non-relapse mortality and relapse (ITT)

Non-Relapse Mortality

- Omidubicel (N=62)
- Control (N=63)

Cumulative Incidence of Non-Relapse Mortality

Days post Randomization

Relapse

- Omidubicel (N=62)
- Control (N=63)

Incidence of Relapse

Days post Randomization

p=0.09

p=0.32
Disease-free and overall survival (ITT)

Disease-Free Survival

Overall Survival

HR 0.59 (95% CI = 0.29 – 1.12)

p=0.16

p=0.68
Conclusions

• This global phase III randomized study demonstrated that transplantation with omidubicel compared to standard cord blood transplantation results in
 – Faster hematopoietic recovery
 – Fewer infections
 – Fewer days in hospital

• Omidubicel should be considered as the new standard of care for patients eligible for UCBT
Acknowledgements

Co-Investigators

Mitchell Horwitz
Patrick Stiff
Corey Cutler
Claudio Brunstein
Rabi Hanna
Richard Maziarz
Andrew Rezvani
Nicole Karras
Joseph McGuirk
Gary Schiller
Christine Duncan
Amy Keating
Yasser Khaled
Olga Frankfurt
Victor Aquino
Edward Peres
Dennis Cooper
Leonid Volodin
Joanne Kurtzberg
David Valcarcel
Isabel Badell
William Hwang
Liang Pui Koh
Caroline Lindemans
Nelson Hamerschlak
Vanderson Rocha
Juliana Folloni
Ron Ram
Moshe Yeshurun
Robert Wynn
Emma Nicholson

Gamida Cell

Tony Peled
Einan Galamidi-Cohen
Irit Segalovich

Emmes Corp.

Steven Wease
Beth Blackwell

Laurence Freedman, PhD (Statistics)

Patients and their families who participated in the study