# HEALTH-RELATED QUALITY OF LIFE (HRQL) FOLLOWING TRANSPLANTATION WITH OMIDUBICEL VERSUS UMBILICAL CORD BLOOD (UCB) IN PATIENTS WITH HEMATOLOGIC MALIGNANCIES: RESULTS FROM A PHASE III RANDOMIZED, MULTICENTER STUDY

CHENYU LIN.<sup>1</sup> GAUTAM SAJEEV.<sup>2</sup> PATRICK STIFF.<sup>3</sup> CLAUDIO BRUNSTEIN.<sup>4</sup> COREY CUTLER.<sup>5</sup> GUILLERMO SANZ.<sup>6</sup> CAROLINE A LINDEMANS.<sup>7</sup> ANDREW R REZVANI.<sup>8</sup> RABI HANNA.<sup>9</sup> LIANG PIU KOH.<sup>10</sup> RICHARD T MAZIARZ.<sup>11</sup> WILLIAM Y K HWANG.<sup>12</sup> YAN SONG.<sup>2</sup> QING LIU.<sup>2</sup> ROCIO MANGHANI.<sup>13</sup> SMITHA SIVARAMAN.<sup>13</sup> JAMES SIGNOROVITCH.<sup>2</sup> EINAT GALAMIDI-COHEN,<sup>14</sup> MITCHELL HORWITZ,<sup>1</sup> ANTHONY D SUNG<sup>1</sup>

<sup>1</sup>Adult Stem Cell Transplant Program, Division of Cellular Therapy, Department of Medical Center, Durham, NC, USA; <sup>3</sup>Loyola University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Hematology, Oncology and Transplantation, University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Hematologia, Hospital University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Hematology, Oncology and Transplantation, University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Hematology, Oncology and Transplantation, University of Minnesota, MN, USA; <sup>6</sup>Servicio de Hematologia, Hospital University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Hematology, Oncology and Transplantation, University Medical Center, Chicago, IL, USA; <sup>4</sup>Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Division of Hematology, Oncology and Transplant Program, Division of Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Program, Diversity Pediatrics, <sup>1</sup>Adult Stem Cell Transplant Progr University Medical Center Utrecht, Utrecht, Utrecht, Netherlands; <sup>8</sup>Department of Hematology, Oncology, and Bone Marrow Transplantation, Cleveland, OH, USA; <sup>9</sup>Department of Hematology, Oncology, and Bone Marrow Transplantation, Stanford, CA, USA; <sup>9</sup>Department of Hematology, Oncology, and Bone Marrow Transplantation, Cleveland, OH, USA; <sup>10</sup>Department of Hematology, Oncology, National University Cancer Institute, Singapore; <sup>11</sup>Knight Cancer Institute, Singapore; <sup>11</sup>Knight Cancer Institute, Singapore; <sup>10</sup>Department of Hematology, Oncology, and Bone Marrow Transplantation, Cleveland, OR, USA; <sup>10</sup>Department of Hematology, Oncology, National University Cancer Institute, Singapore; <sup>11</sup>Knight Cancer Institute, Singa <sup>12</sup>Department of Hematology, Singapore General Hospital, Singapore; <sup>13</sup>Gamida Cell Ltd., Boston, MA, USA; <sup>14</sup>Gamida Cell Ltd., Jerusalem, Israel

# BACKGROUND

- Patients with hematologic malignancies undergoing allogeneic hematopoietic cell transplant (HCT) experience notable deficits in healthrelated quality of life (HRQL)<sup>1-3</sup>
- Omidubicel is an investigational advanced cell therapy, derived from an appropriately HLA-matched single umbilical cord blood (UCB) unit
- Omidubicel manufacturing in the presence of nicotinamide (NAM) allows for inhibition of differentiation and enhances the functionality and number of hematopoietic stem and progenitor cells<sup>4</sup>
- HCT with omidubicel has demonstrated significantly faster and robust neutrophil and platelet engraftment; shorter hospitalization; and lower rates of bacterial, viral, and invasive fungal infections as compared with UCB in a phase III randomized trial (NCT02730299)<sup>5</sup>
- An understanding of the impact of omidubicel from the patient perspective is important to stakeholders and decision-makers, including providers, payers, caregivers, and the patients themselves

# OBJECTIVE

• To compare patient-reported HRQL outcomes between treatment groups receiving HCT with omidubicel versus UCB in a phase III randomized trial

# **METHODS**

#### Data source and sample selection

- A phase III randomized controlled trial of omidubicel (NCT02730299; data cutoff: April 2021) included patients with high-risk hematologic malignancies, aged 12–65 years
- The present analysis included patients who received protocol-defined treatment and provided HRQL evaluations at baseline and at least one follow-up visit

#### Study measures

- HRQL measures were assessed prospectively at screening (treated as baseline) and days 42, 100, 180, and 365 post-transplant. Higher HRQL scores indicate better quality of life. Specifically, HRQL measures include:
- Functional Assessment of Cancer Therapy–General (FACT-G) domains
- Physical well-being (7 items, domain score ranges from 0 to 28)
- Social/family well-being (7 items, domain score ranges from 0 to 28)
- Emotional well-being (6 items, domain score ranges from 0 to 24)
- Functional well-being (7 items, domain score ranges from 0 to 28)
- FACT-G total score (sum of the 4 FACT-G domain scores)
- Bone marrow transplantation (BMT) subscale score (10 items, each item score ranges from 0 to 4)
- FACT-BMT total score (comprised of all FACT-G domains plus BMTspecific subscale items)
- EuroQol 5-dimension scale 3-level instrument (EQ-5D-3L) index score
- A range from less than 0 (where 0 is a health state equivalent to death and negative values indicate states worse than death) to 1 (perfect health)

#### Statistical methods

- Patient baseline characteristics were described and compared between the omidubicel and UCB groups
- Changes in HRQL measures over time were compared between treatment groups
- Mixed effect models with repeated measures (MMRM) were used to analyze changes from baseline during the first year post-transplant
- Models were adjusted for time (categorical by visit), treatment group, interaction between treatment and time, baseline HRQL score, region, age group, sex, race, HCT-specific comorbidity index, and primary diagnosis
- Correlations across repeated HRQL measures from the same individual were accounted for via an unstructured covariance matrix
- Areas under the mean HRQL trajectory curve (AUCs), which represent the average HRQL experience over time, were compared between treatment groups<sup>6</sup>

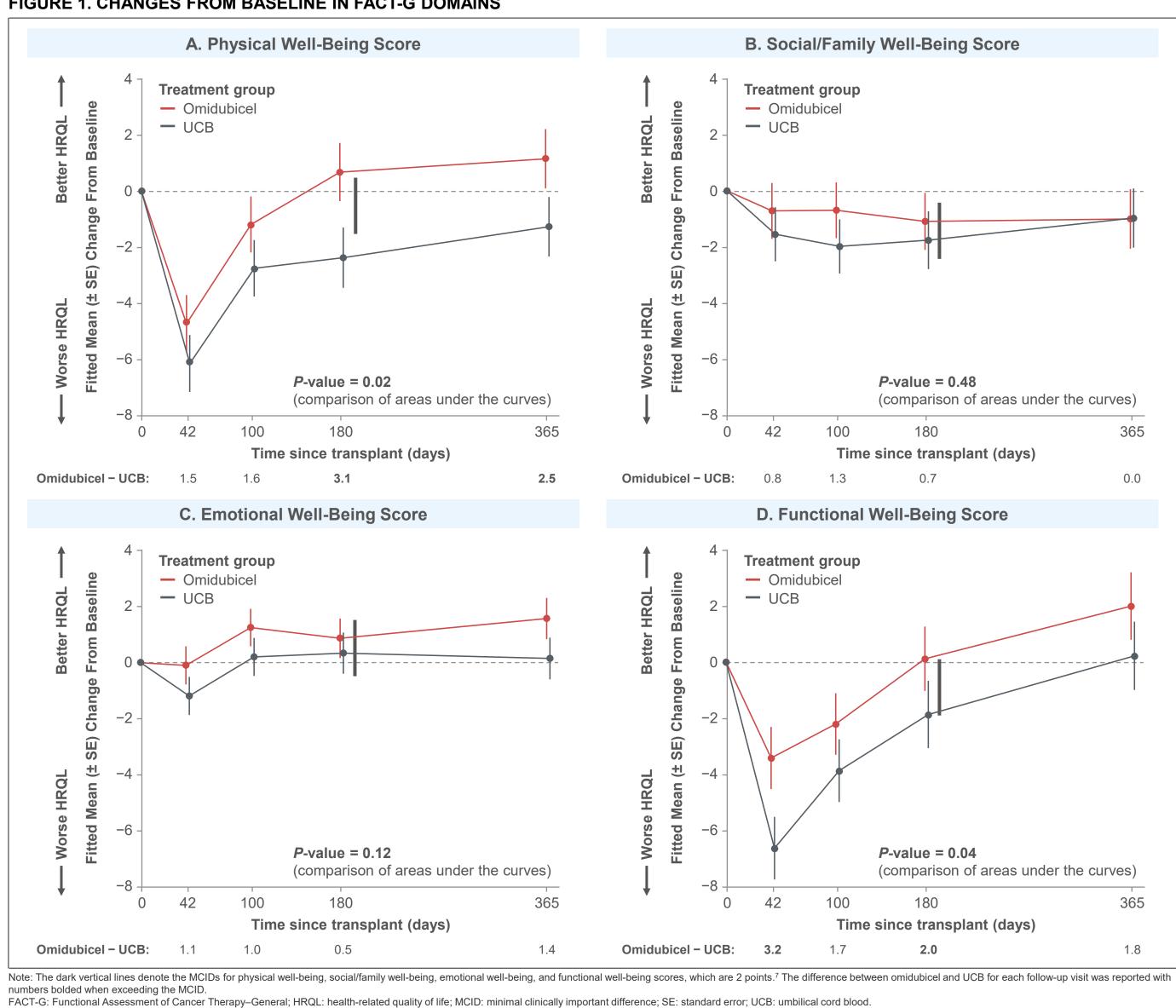
# RESULTS

#### Study sample

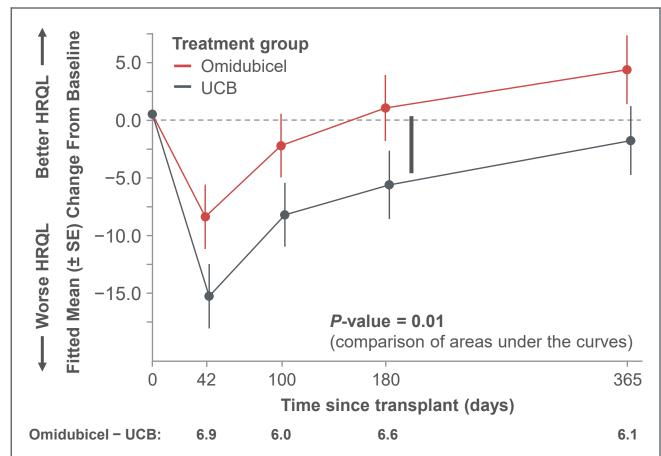
- 125 patients were randomized and 108 patients were transplanted
- 33 transplanted patients were excluded from the HRQL population
- due to missing HRQL at baseline (n=14) or during follow-up (n=19) Rates of missing HRQL data were comparable between treatment groups, although slightly higher in general for UCB
- HRQL population (N=75)
- 75 patients had >50% non-missing items for FACT-G domains and BMT subscales at both the baseline and at least one follow-up visit
- 37 patients were transplanted with omidubicel and 38 patients were transplanted with UCB
- **Baseline characteristics**
- Demographics and HRQL scores were comparable between the 2 treatment groups (**Table 1**)

#### TABLE 1. BASELINE CHARACTERISTICS

|                                       | Omidubice<br>(n=37) |
|---------------------------------------|---------------------|
| Demographics                          |                     |
| Age (years), mean ± SD                | 37.3 ± 15.5         |
| 12–17, n (%)                          | 5 (13.5)            |
| 18–39, n (%)                          | 15 (40.5)           |
| 40–65, n (%)                          | 17 (45.9)           |
| Male, n (%)                           | 20 (54.1)           |
| Weight (kg), mean ± SD                | 82.4 ± 20.5         |
| White, n (%)                          | 24 (64.9)           |
| US participants, n (%)                | 27 (73.0)           |
| Clinical measures                     |                     |
| Primary diagnosis, n (%)              |                     |
| Acute myelogenous leukemia            | 17 (45.9)           |
| Acute lymphoblastic leukemia          | 12 (32.4)           |
| Chronic myelogenous leukemia          | 3 (8.1)             |
| Myelodysplastic syndrome              | 3 (8.1)             |
| Lymphoma                              | 1 (2.7)             |
| Other                                 | 1 (2.7)             |
| Disease risk index, n (%)             |                     |
| Low risk                              | 11 (29.7)           |
| Intermediate risk                     | 12 (32.4)           |
| High risk                             | 14 (37.8)           |
| HCT-specific comorbidity index, n (%) |                     |
| 0                                     | 8 (21.6)            |
| 1–2                                   | 11 (29.7)           |
| 3+                                    | 18 (48.6)           |
| HRQL measures, mean ± SD              |                     |
| FACT-G total score                    | 80.2 ± 14.3         |
| Physical well-being score             | 22.3 ± 5.1          |
| Social/family well-being score        | 22.2 ± 5.2          |
| Emotional well-being score            | 18.1 ± 4.4          |
| Functional well-being score           | 17.6 ± 6.2          |
| BMT subscale score                    | 28.2 ± 5.7          |
| FACT-BMT total score                  | 108.4 ± 19.1        |
| EQ-5D-3L index score                  | 0.86 ± 0.16         |

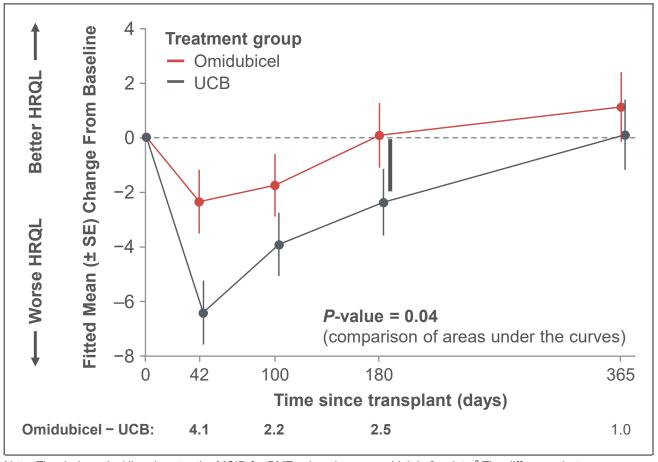

BMT: bone marrow transplant; EQ-5D-3L: EuroQol 5-dimension scale 3-level instru Assessment of Cancer Therapy-Bone Marrow Transplant; FACT-G: Functional Assessment of Cancer Therapy-General; HCT: hematopoietic cell transplantation; SD: standard deviation; UCB: umbilical cord blood; US: United

| UCB                                                          |  |
|--------------------------------------------------------------|--|
| (n=38)                                                       |  |
|                                                              |  |
| 35.1 ± 14.8                                                  |  |
| 5 (13.2)                                                     |  |
| 16 (42.1)                                                    |  |
| 17 (44.7)                                                    |  |
| 24 (63.2)                                                    |  |
| 79.7 ± 21.3                                                  |  |
| 20 (52.6)                                                    |  |
| 28 (73.7)                                                    |  |
|                                                              |  |
|                                                              |  |
| 17 (44.7)                                                    |  |
| 14 (36.8)                                                    |  |
| 2 (5.3)                                                      |  |
| 2 (5.3)                                                      |  |
| 2 (5.3)                                                      |  |
| 1 (2.6)                                                      |  |
|                                                              |  |
| 6 (15.8)                                                     |  |
| 17 (44.7)                                                    |  |
| 15 (39.5)                                                    |  |
|                                                              |  |
| 6 (15.8)                                                     |  |
| 12 (31.6)                                                    |  |
| 20 (52.6)                                                    |  |
|                                                              |  |
| 83.9 ± 11.9                                                  |  |
| $23.6 \pm 4.5$                                               |  |
| 24.1 ± 3.6                                                   |  |
| 18.4 ± 3.6                                                   |  |
| 17.9 ± 5.7                                                   |  |
| 27.9 ± 6.6                                                   |  |
| 111.8 ± 17.3                                                 |  |
| 0.87 ± 0.13                                                  |  |
| rument; FACT-BMT: Functional<br>ssessment of Cancer Therapy– |  |


#### Comparison of HRQL changes between groups during the first year post-transplant

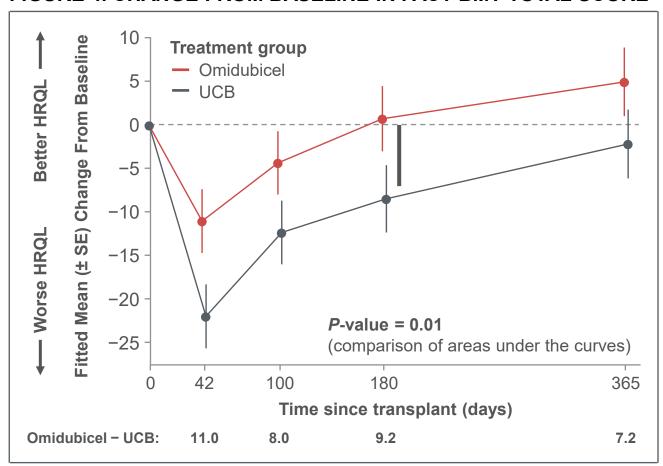
- An initial decline in mean scores for all HRQL measures was observed at day 42 post-transplantation in both treatment groups. The mean declines were consistently numerically smaller in the omidubicel group compared to the UCB group
- FACT-G domain scores
- Average change in physical well-being domain score (**Figure 1A**) was significantly better with omidubicel (*P*=0.02). The minimal clinically important difference (MCID) of 2 units<sup>7</sup> was exceeded at days 180 and 365
- Numerically superior changes in average social/family well being and emotional well being domain scores were observed in the omidubicel group, but were not significant (**Figures 1B, 1C**)
- Average change in functional well-being domain score (**Figure 1D**) was significantly better with omidubicel (*P*=0.04) and exceeded the MCID of 2 units<sup>7</sup> at day 42
- Changes in FACT-G. FACT-BMT and BMT subscale scores also indicated better average HRQL over time in the omidubicel group relative to the UCB group (Figures 2–4)
- FACT-G: Mean differences exceeded the MCID of 5 units<sup>7</sup> at all time points (P=0.01)
- BMT subscale: Mean differences exceeded the MCID of 2 units<sup>8</sup> at days 42, 100, and 180 (*P*=0.04)
- FACT-BMT: Mean differences exceeded the MCID of 7 units<sup>7,8</sup> across all time points (*P*=0.01)
- Average EQ-5D-3L index (Figure 5) was numerically superior with omidubicel (*P*=0.06) and exceeded the MCID of 0.07 units<sup>9</sup> at days 100 and 180
- In a regression analysis correlating HRQL with clinical outcomes, neutrophil engraftment by day 42 was associated with better HRQL scores in certain domains; grade 3 viral infections, grade 2/3 bacterial infections, grade 3 fungal infections, and longer hospitalizations in the first 100 days post-transplant were associated with worse HRQL scores (data not shown)

#### FIGURE 1. CHANGES FROM BASELINE IN FACT-G DOMAINS



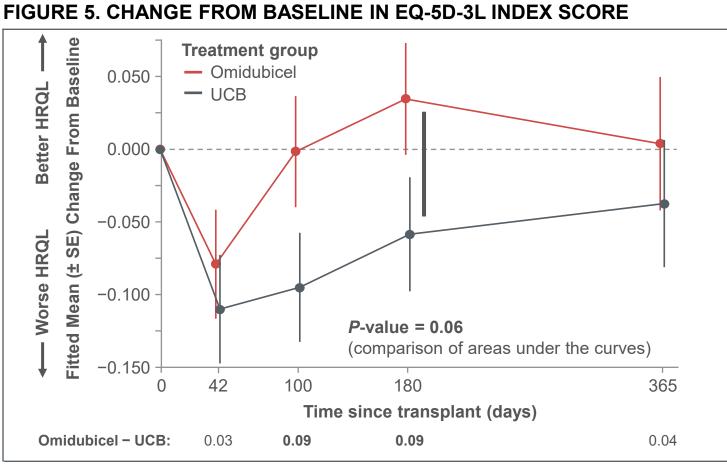

#### FIGURE 2. CHANGE FROM BASELINE IN FACT-G TOTAL SCORE




Note: The dark vertical line denotes the MCID for FACT-G total score, which is 5 points.<sup>7</sup> The difference between omidubicel and UCB for each follow-up visit was reported with numbers bolded when exceeding the MCID. FACT-G: Functional Assessment of Cancer Therapy–General; HRQL: health-related quality of life; MCID: minimal clinically important difference; SE: standard error; UCB: umbilical cord blood.

#### FIGURE 3. CHANGE FROM BASELINE IN BMT SUBSCALE SCORE




Note: The dark vertical line denotes the MCID for BMT subscale score, which is 2 points.<sup>8</sup> The difference between omidubicel and UCB for each follow-up visit was reported with numbers bolded when exceeding the MCID. BMT: bone marrow transplantation; FACT-G: Functional Assessment of Cancer Therapy–General; HRQL: health-related quality of life; MCID: minimal clinically important difference; SE: standard error; UCB: umbilical cord blood.

### FIGURE 4. CHANGE FROM BASELINE IN FACT-BMT TOTAL SCORE



Note: The dark vertical line denotes the MCID for FACT-BMT total score, which is 7 points.<sup>7,8</sup> The difference between omidubicel and UCB for each follow-up visit was reported with numbers bolded when exceeding the MCID. FACT-BMT: Functional Assessment of Cancer Therapy–Bone Marrow Transplant; HRQL: health-related quality of life; MCID: minimal clinically important difference; SE: standard error; UCB: umbilical cord blood.

CT-039



Note: The dark vertical line denotes the MCID for EQ-5D index total score, which is 0.07 points.<sup>9</sup> The difference between omidubicel and UCB for each follow-up visit was reported with numbers bolded when exceeding the MCID. EQ-5D-3L: EuroQol 5-dimension scale 3-level instrument; HRQL: health-related quality of life; MCID: minimal clinically important difference; SE: standard error; UCB: umbilical cord blood

# DISCUSSION

- As patients with better HRQL are generally more likely to provide data, HRQL benefits estimated for omidubicel may be conservative. More patients in the UCB group had missing follow-up data, which was likely attributable to inferior outcomes including worse HRQL
- Missing data may limit interpretability of results and underestimate HRQL burden
- The AUC approach is well-suited to settings in which HRQL can both worsen and improve on average over time, such that no single time point is representative of the full patient experience
- Long-term HRQL changes >1-year post-transplant were not studied here, but are important to patients and caregivers
- This was an exploratory study and statistical analyses were performed post hoc; no multiplicity corrections were performed

# CONCLUSIONS

- In a phase III randomized trial, omidubicel demonstrated significantly faster neutrophil and platelet engraftment, shorter hospitalizations, and lower infection rates compared to UCB<sup>5</sup>
- This current study demonstrated that, in addition to clinical endpoint benefits, omidubicel was associated with meaningful improvements or greater preservation of several important and well-established patient-reported HRQL measures
- HRQL improvements from omidubicel were observed as early as 42 days posttransplant and persisted throughout the first year, indicating potential long-term benefits
- Achieving neutrophil engraftment by day 42 was associated with better HRQL outcomes
- The regression analysis correlating HRQL with clinical outcomes suggested a relationship between the known clinical benefits of omidubicel and the improvements seen in HRQL

#### DISCLOSURES

MEH is a consultant for AbbVie, CareDx, Kadmon, and Magenta; and receives research support from Gamida Cell. PS is a consultant for CRISPR; receives research support from Amgen, Atara Biotherapeutics, Eisai, Gamida Cell, Incyte Corp, Macrogenics, and Takeda. CB receives research support from Astex, Gamida Cell, and Magenta; and is a consultant for AlloVir. CC is a consultant for Incyte Corporation, Jazz Pharmaceuticals, Kadmon, Medsenic, Mesoblast, and Regeneron. GS is an advisor for AbbVie, Helsinn, Hoffmann-LaRoche, and Takeda. ARR receives research support from Pharmacyclics. RTM is an advisor or consultant for AlloVir, Artiva, CRISPR Therapeutics, Incyte Corporation, and Novartis; reports honoraria from Incyte Corporation and Vor Pharma; receives research support from BMS and Omeros; participates in a data safety monitoring board for Athersvs, Novartis, and Vor Pharma; and has a patent with Athersvs, RM is an employee of Gamida Cell Inc., Kite Inc., and Tricida Corporation. SS is an employee of Gamida Cell Inc. and Incyte Corporation. EG-C is a former employee of Gamida Cell Inc. GS, YS, QL, and JS are employees of Analysis Group Inc., which received consulting fees from Gamida Cell Inc. for this research

#### ACKNOWLEDGMENTS

This research was funded by Gamida Cell. Editorial support was provided by Evidence Scientific Solutions, and was funded by Gamida Cell.

#### REFERENCES

1. Kenzik K, et al. Support Care Cancer. 2015;23:797–807. 2. Cohen MZ, et al. J Pain Symptom Manage 2012;44:168–180. 3. Lee S, et al. Bone Marrow Transplant. 2006;38:305–310. 4. de Koning C, et al. Bone Marrow Transplant. 2021;56:2826–2833. 5. Horwitz ME, et al. Blood. 2021;138:1429–1440. 6. Bell ML, et al. Sage Open. 2014;4. doi: 10.1177/2158244014534858. 7. Yost KJ, et al. Eval Health Prof. 2005;28:172–191. 8. McQuellon R, et al. Bone Marrow Transplant. 1997;19:357–368. 9. Pickard AS, et al. *Health Qual Life Outcomes*. 2007;5:1–8.

