

Shifting From T to NK Immunotherapy

Aviad Pato, PhD

PEGS 2021 Immunotherapy Safety & Efficacy

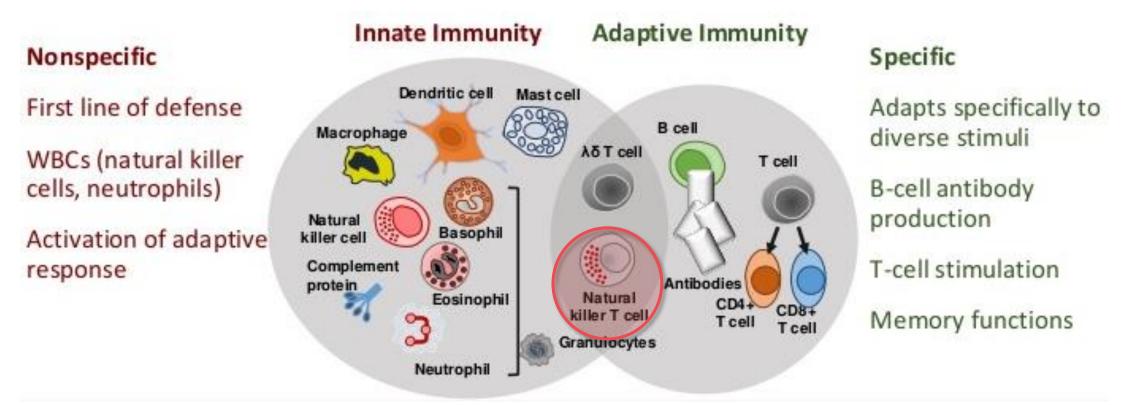
Agenda

> Natural Killer Cells (NKs) And Immunotherapy

gamida (•el

- > NK Genetic Modification
- Gamida-Cell NAM-NKs
- Gamida-Cell mRNA NK Immunotherapy

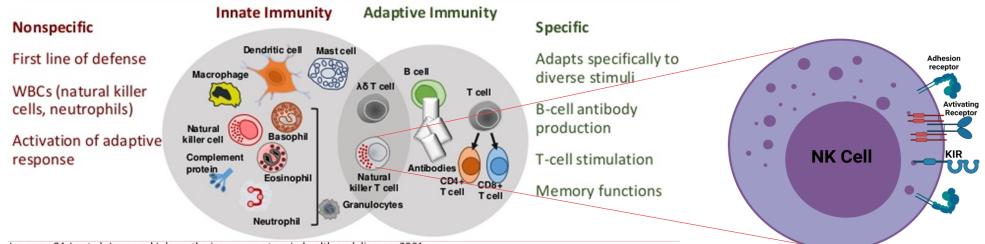
Agenda


> Natural Killer Cells (NKs) And Immunotherapy

gamida (•ell

- **NK Genetic Modification**
- Gamida-Cell NAM-NKs
- Gamida-Cell mRNA NK Immunotherapy

Immune System and Natural Killer Cells


Janeway CA Jr, et al. Immunobiology: the immune system in health and disease. 2001.

Natural Killer Cells - Function and Response

- Lymphocytes in the same family as T and B cells, originating from a common progenitor.
- Rapidly respond to a wide variety of pathological challenges.
- Kill virally infected cells, detect and control early signs of cancer.
- Secrete proinflammatory cytokines to enhance the immune response.
- Kill tumor cells without priming, prior activation or antigen presentation.

Janeway CA Jr, et al. Immunobiology: the immune system in health and disease. 2001.

Natural Killer cells - The Next Great Cancer Immunotherapy

Natural killer cells (yellow) attack a cancer cell. EYE OF SCIENCE/SCIENCE SOURCE

Engineered natural killer cells may be the next great cancer immunotherapy

"CAR natural killer (CAR-NK) cells could be safer, faster to produce, and cheaper, and they may work in situations where T cells falter" *Science*. *Sep* 13,2018

Chimeric Antigen Receptor- T Vs NK

	T Cells	NK Cells		
"Off the shelf"	No - Autologous T	Yes - Allogeneic donor NK		
		-		
-	- · · ·			

Agenda

> Natural Killer Cells (NKs) And Immunotherapy

> NK Genetic Modification

Gamida-Cell NAM-NKs

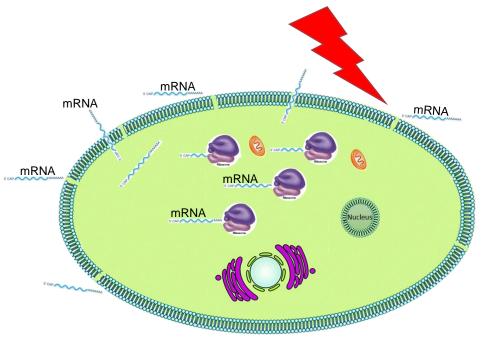
Gamida-Cell mRNA NK Immunotherapy

NKs Genetic Modifications

- Different systems viral and nonviral technologies
- Many viral vector systems have been developed however the transduction efficiency in NKs is less superior than those developed for T cells
- GMP-grade viral vector production for clinical therapy is cost intensive and requires high safety standards
- During the last decade mRNA electroporation has increasingly been used for NK cell genetic modification
- Significantly high expression of CD19-CARs in NK (cell lines and primary) were achieved by using mRNA with minimal effects on cell viability

CAR-NK in Clinical Trials

No.	NCT	Start Year	Stage	Tumors	Target	NK source	sponsor locations	CAR structure	Gene transfer		
Trials	Trials completed										
1	NCT00995137	2009	I	B-ALL	CD19	PB-NK	St. Jude Children's Research Hospital, US	ScFv-CD8αTM-CD137-CD3ζ	mRNA electroporation		
2	NCT02944162	2016	I/II	AML	CD33	NK92	PersonGen BioTherapeutics (Suzhou) Co., Ltd., China	ScFv-CD28-CD137-CD3ζ	LV*		
Trials	Trials actively recruiting										
1	NCT01974479	2013	II	B-ALL	CD19	PB-NK	National University Health System, Singapore	ScFv-CD8αTM-CD137-CD3ζ	mRNA electroporation		
2	NCT02742727	2016	I/II	Lymphoma, leukaemia	CD7	NK92	PersonGen BioTherapeutics (Suzhou) Co., Ltd., China	ScFv-CD28-CD137-CD3ζ	electroporation		
3	NCT02839954	2016	I/II	Solid tumour	MUCI	NK92	PersonGen BioTherapeutics (Suzhou) Co., Ltd., China	ScFv-CD28-CD137-CD3ζ	LV		
4	NCT02892695	2016	I/II	Lymphoma, leukaemia	CD19	NK92	PersonGen BioTherapeutics (Suzhou) Co., Ltd., China	ScFv-CD28-CD137-CD3ζ	LV		
5	NCT03056339	2017	I/II	B-lymphoma	CD19	UCB-NK	MD Anderson, US	iCasp9-ScFv-CD28-CD3ζ-IL-15	RV**		
6	NCT03383978	2017	Ι	GBM	HER2	NK92	Johann Wolfgang Goethe University Hospital, Germany	ScFv-CD28-CD3ζ	LV		
7	NCT03415100	2018	I	Metastatic solid tumour	NKG2DL	PB-NK	The Third Affiliated Hospital of Guangzhou Medical University,	ScFv-CD8αTM-CD3ζ; ScFv-	mRNA electroporation		
							China	CD8aTM-DAP12			
8	NCT03656705	2018	I	NSCLC	NR	NK92	Xinxiang medical university, China	NR	RV/LV		
9	NCT03940833	2019	I/II	R/R multiple myeloma	BCMA	NK92	Asclepius Technology Company Group (Suzhou) Co., Ltd., China	NR	LV		
10	NCT03941457	2019	I/II	Pancreatic Cancer	ROBO1	NK92	Asclepius Technology Company Group (Suzhou) Co., Ltd., China	NR	LV		
11	NCT03940820	2019	I/II	Solid tumour	ROBO1	NK92	Asclepius Technology Company Group (Suzhou) Co., Ltd., China	NR	LV		
12	NCT04245722	2020	I	B-cell lymphoma, CLL	CD19	iPSC (FT596)	Fate Therapeutics, San Diego, USA	scFv-NKG2D-2B4-CD3ζ-IL-15/R-	LV		
G.	Xie et al. /	EBioMe	dicine	e 59 (2020) 102975				hnCD16			


All clinical trials using peripheral blood (PB) NKs to express CARs were generated using mRNA electroporation

mRNA Electroporation

- No transgene integration into the genome
- Homogenous protein expression
- High transfection efficiency
- Rapid expression of protein
- Transiency of the expression (+/-)
- Absence of an influence on cell viability
- Ability to introduce several proteins at the same time
- Scalability of the method
- GMP compatibility

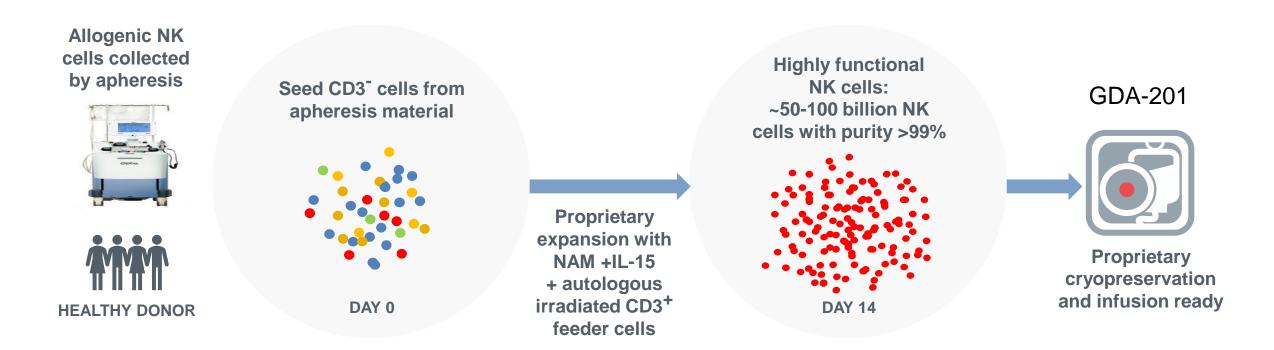
This method creates a highly reproducible and easy-to-validateNFIDENTIALproduct that can be used for cellular immunotherapies

Agenda

> Natural Killer Cells (NKs) And Immunotherapy

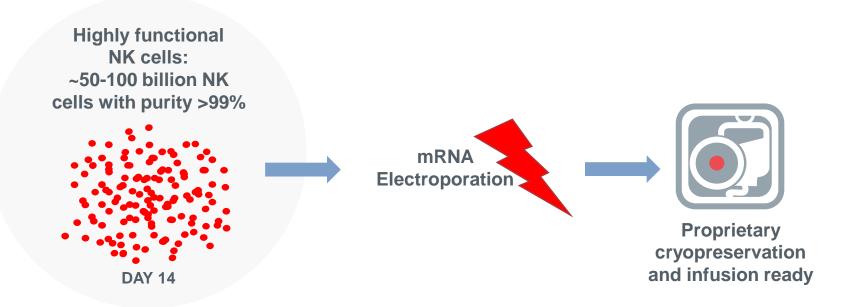
gamida (ell

- **NK Genetic Modification**
- Gamida-Cell NAM-NKs
- Gamida-Cell mRNA NK Immunotherapy



Gamida-Cell 'Off-The-Shelf' Peripheral-Blood NKs

- Peripheral blood NKs are highly functional and cytotoxic; however, they are in their last lineage stage and display elevated markers of exhaustion
- Nicotinamide (NAM), a vitamin B3 derivative, is the key component in culturing Gamida-Cell NKs
- NAM rejuvenates NKs during expansion and cryopreservation
- Clinical responses have been observed in a phase 1 trial of GDA-201 (Gamida-Cell NAM-NKs) in patients with refractory non-Hodgkin lymphoma (Bachanova, et. al., Blood 134:777, 2019)

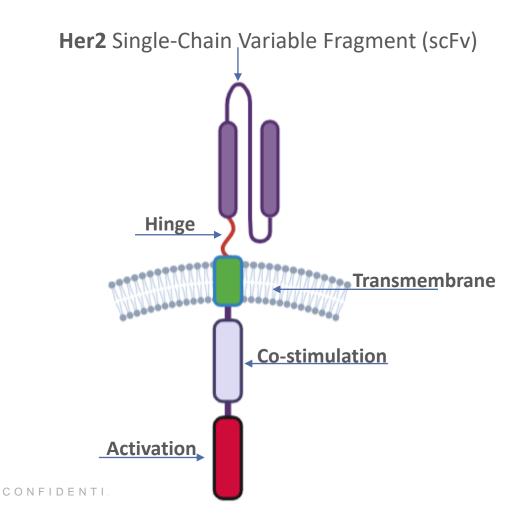

Gamida-Cell 'Off-The-Shelf' NAM-NK Manufacture

NAM rejuvenates NKs during expansion and cryopreservation

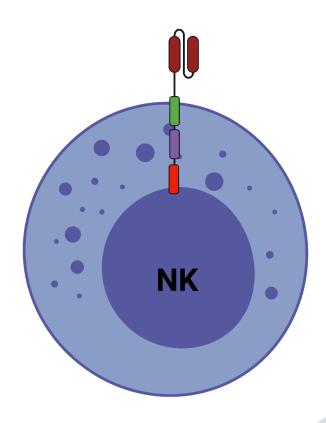
'Off-The-Shelf' mRNA-Manipulated NAM-NKs

mRNA NAM-NK electroporated at harvest

Agenda

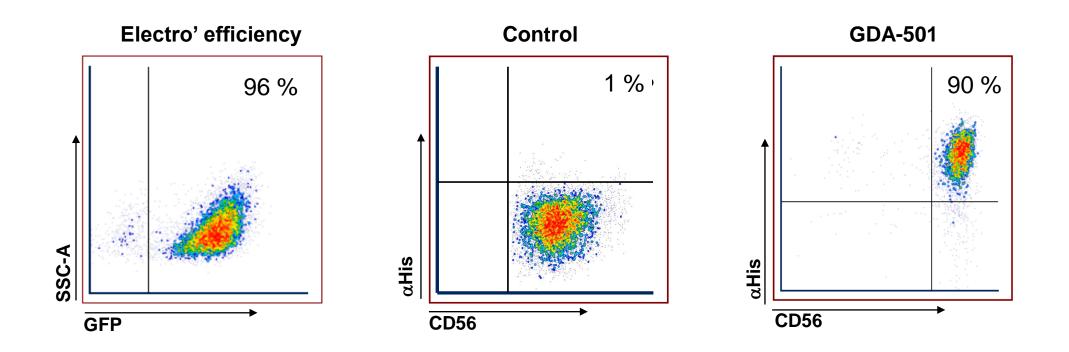

- > Natural Killer Cells (NKs) And Immunotherapy
- **NK Genetic Modification**
- **Gamida-Cell NAM-NKs**

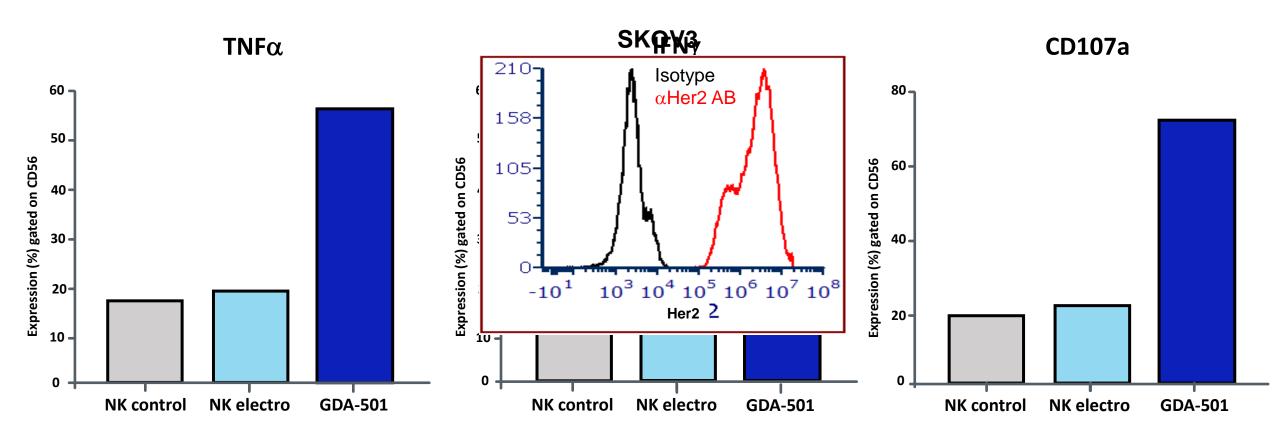
Gamida-Cell mRNA NK Immunotherapy



Gamida-Cell Chimeric Antigen Receptor mRNA Constructs

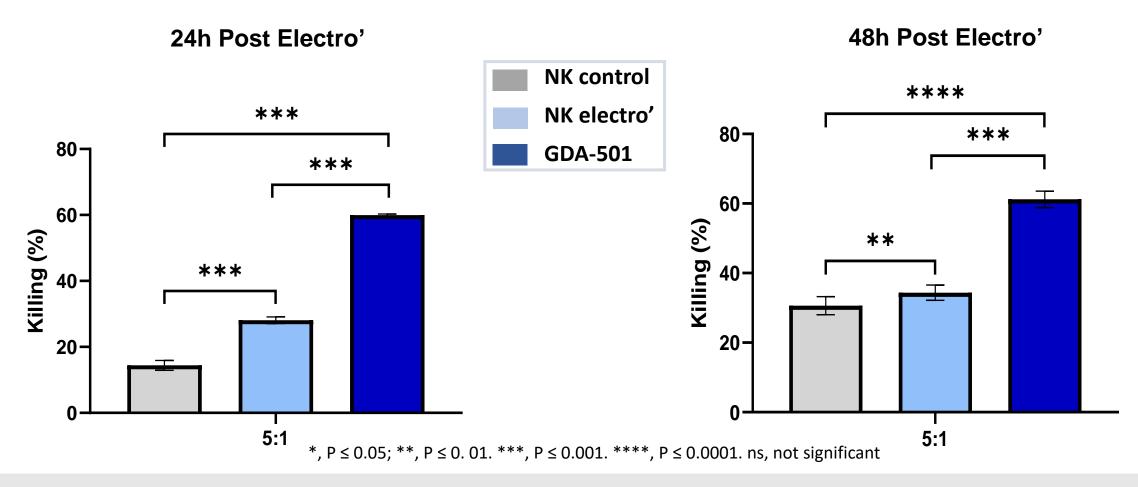
Gamida-cell developed multiple CAR-NKs to target and activate NKs against Her2⁺ tumors




GDA-501: NAM-NK aHer2 mRNA CAR Construct

The CAR construct is expressed by NK cells and recognizes the Her2 protein

GDA-501 Enhances Activity Against a Her2 Tumor Expressing Cell Line



αHer2 CAR-NKs upregulate the degranulation marker CD107a and expression of inflammatory cytokines when cultured with SKOV3

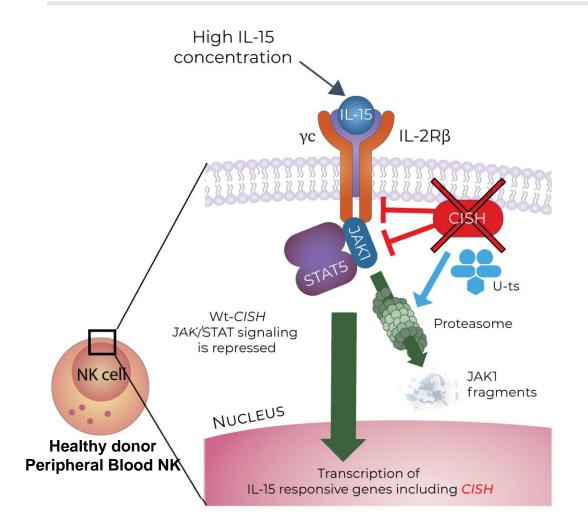
GDA-501 Increases Killing Against a Her2 Tumor Expressing Cell Line

Killing assay - 24h and 48h after the electroporation followed by a 6hr co-culture of NK cells with SKOV3 cell line

Combined Genetic Engineering CISH Knockout & mRNA Membrane-bound IL-15 Expression

<u>CISH</u>

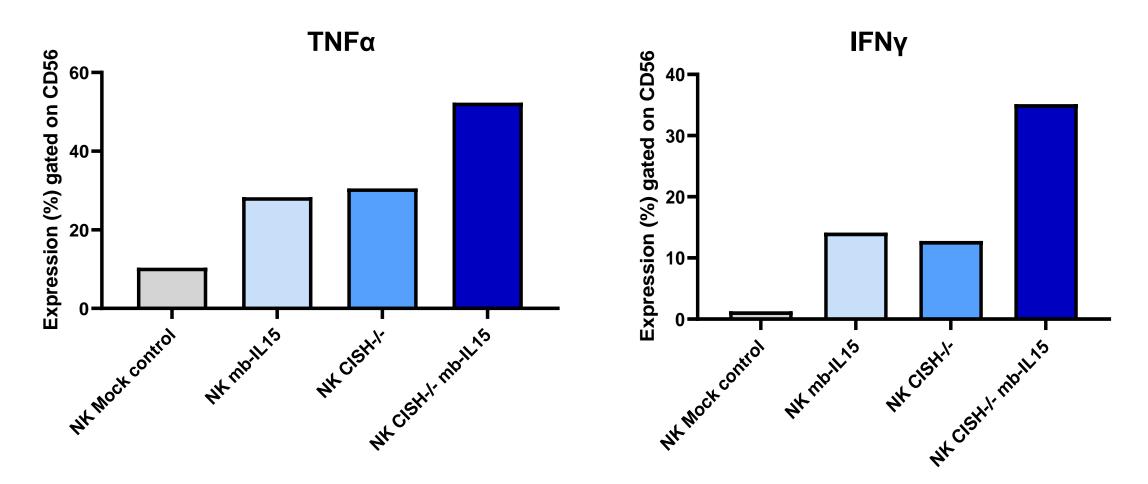
- *CISH* is a key suppressor of IL-15 signaling which acts as negative feedback loop
- *CISH* deletion increases sensitivity to IL-15 by lowering the NK activation threshold


<u>IL-15</u>

- The lack of persistence of infused NK cells is a principal limitation of adoptive immunotherapy
- The most important cytokine for NK activation, persistence, and proliferation
- NKs equipped with membrane-bound IL-15 (mbIL-15) will be fully autonomous and will obviate the need for patient IL-2 administration regimen

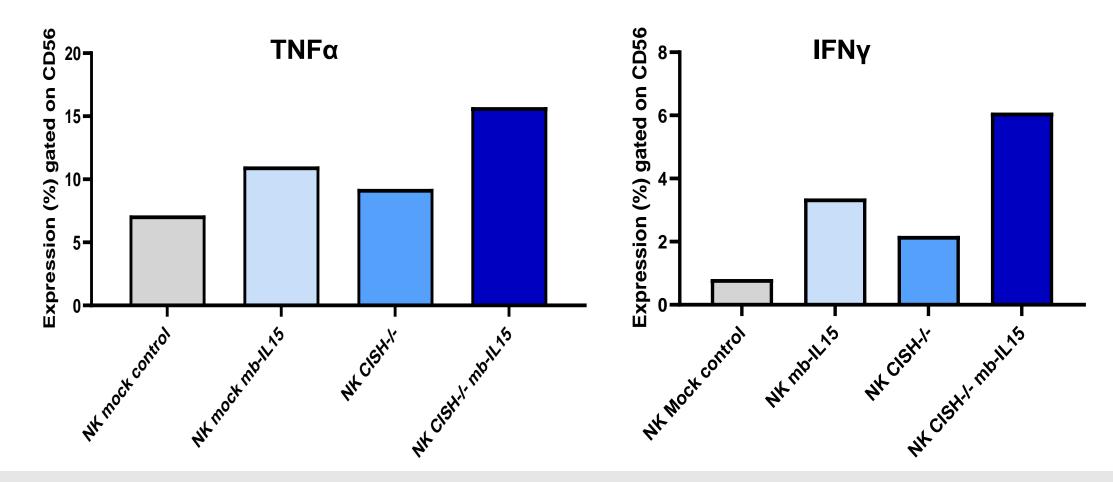
Combining CISH KO with mbIL-15 mRNA can improve NK activation, persistence and killing capacity

GDA-301: CISH KO & MbIL-15 Combined Genetic Approach



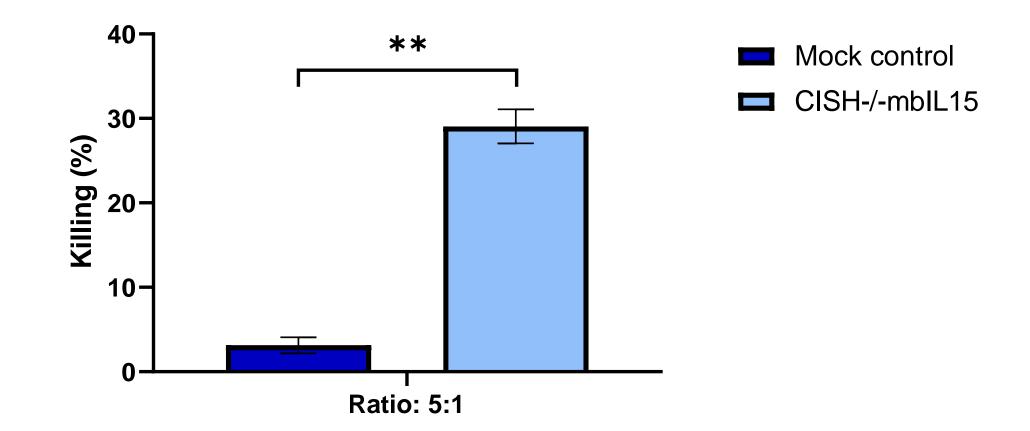
CISH Knockout

GDA-301 Enhances Activity Against a Chronic Myelogenous Leukemia Cell line (K562)



GDA-301 Increases the expression of pro-inflammatory cytokines when cultured with K562

GDA-301 Enhances Cytotoxicity Function Against a Multiple Myeloma Cell line (RPMI)



GDA-301 Increases the expression of pro-inflammatory cytokines when cultured with MM RPMI

GDA-301 Increases Killing Against Multiple Myeloma Cell Line (RPMI)

GDA-301 Increases the killing capacity, 24 h post electro' when cultured for 6h with MM RPMI

Summary

- The evolving field of NK cellular immunotherapy is modifying what has been learned from T cell gene editing and applying said knowledge to NK cell manipulation
- Gamida-Cell utilizes mRNA delivery by electroporation, enabling highly efficient expression of cytokines, and CAR constructs into NAM-expanded, allogeneic NK cells
- This technique can be easily applied to generate improved "off-the-shelf" NK cancer therapeutics
- Gamida-cell NK mRNA gene engineering allows manipulations that hold the potential for efficient and safe clinical immunotherapy applications

Acknowledgment

gamida (ell Julian Adams – CEO **Ronit Simantov- CMO** Yona Geffen- V.P R&D **Research Team** Astar Hailu Avishay Edri Dima Yackoubov Julia Rifman Nurit Brickman Orit Berhani Zipori Sherri Cohen

Bar-Ilan University

Ayal Hendel Nimrod Ben Haim

Thank you

gamida (ell