

GamidaCell PosterTemplate V7_21819.pdf 1 2/18/19 8:59 AM

First-in-Human Phase I Study of Nicotinamide-Expanded Related Donor Natural Killer Cells for the Treatment of Relapsed/Refractory Non-Hodgkin Lymphoma and Multiple Myeloma

Veronika Bachanova¹, David H. McKenna¹, Jr., Xianghua Luo¹, Todd E. Defor¹, Sarah A. Cooley¹, Erica Warlick¹, Daniel W. Weisdorf¹, Guy Brachya², Tony Peled², Jeffrey S. Miller¹

All Grades (n) Grade 3/4 (n)

¹University of Minnesota, Minneapolis, Minnesota, ²Gamida Cell, Jerusalem

Masonic Cancer Center University of Minnesota Comprehensive Cancer Center designated

by the National Cancer Institute

Background

Natural Killer (NK) Cells

- Adoptive transfer of cytolytic NK is an attractive immunotherapeutic approach to the treatment of lymphoma and other malignancies
- Previous clinical success has been modest due to limited in vivo persistence of NK cells and
- their impaired effector function Nicotinamide (NAM)-based technology, previously used for hematopoietic stem cells, has been adapted for adult donor NK cells, modulating the characteristics and function of NK cells expanded ex vivo¹
- In preclinical studies, NAM-NK demonstrated cytotoxicity as well as increased homing,
- proliferation and persistence²
- We report preliminary results of a Phase I NAM-NK study in patients with lymphoma and multiple myeloma

Figure 1. NK Cell Functions

Figure 2. NAM-NK Expansion Process

Phase I Study Design

Objectives

Dose escalation phase: Determine maximum tolerated dose of NAM-NK Expansion phase: Overall disease response in multiple myeloma and lymphoma

Key Inclusion Criteria

- **Age:** ≥ 18 to ≤ 80 years
- Acceptable organ function
- Lymphoma: Confirmed CD20-positive B-cell Non-Hodgkin Lymphoma (NHL) with measurable disease > 1.5cm;
- failed conventional therapy and/or transplant
- two lines of therapy including proteasome inhibitor and immunomodulatory drug, or relapse after autologous or allogeneic relapsed/refractory disease that has transplant; measurable disease by M spike, light chains, plasmacytoma, or measurable soft tissue or bone disease

• Myeloma: Relapsed/refractory disease after

Study Schema

- Donor NK cells are expanded ex-vivo
- Patient undergoes lymphodepleting regimen of cyclophosphamide and fludarabine
- Patient receives NAM-NK followed by short course IL-2 Monoclonal antibodies administered prior to and after NAM-NK infusion

Study | -14 | // | -10 | // | -5 | -4 | -3 | -2 | -1 | 0 | +1 | +2 | +3 | +4 | // | +11 | +28 to +360

- : Elotuzumab (10 mg/kg IV) for multiple myeloma,
- rituximab (375 mg/m² IV) for B-cell lymphoma
- Lymphodepleting chemotherapy: Cyclophosphamide (400 mg/m² IV) x 3d and

fludarabine (30 mg/m² /d IV x 3d) IL-2: 6 million units sc

Results

Patient Demographics

Table 1. Demographics and Disease Characteristics

Patient and Disease Characteristics	Number of Patients (N=14)
Age [median (range)]	62 (47-75 years)
Gender: male/female	9/5
Diagnosis	
Multiple myeloma	8
Follicular lymphoma	3
Transformed Lymphoma	2
Diffuse Large B Cell Lymphoma	1
Disease status	
Relapsed	10
Refractory	4
Prior Therapies	
Number of lines of prior therapy [median (range)]	5 (3-10)
Prior Autologous Transplant	7
Prior Allogeneic Transplant	1
Time from Diagnosis to Treatment [median (range)]	4.5 (1-26 years)

Table 2. NAM-NK Dose Cohorts.

Cohort	Target TNC Dose (99% NK)	Total Dose NAM-NK Infused Median (Range)
1	2.0 x 10 ⁷	4.4 x 10 ⁷ (1.9-7.3 x 10 ⁷)
2	1.0 x 10 ⁸	9.3 x 10 ⁷ (8.7 x 10 ⁷ -1.2 x 10 ⁸)
3	2.0 x 10 ⁸	1.7 x 10 ⁸ (1.6-2.0 x 10 ⁸)

Persistence and Expansion of Donor NAM-NK

Forward Scatter ———

Figure 3. Donor NAM-NK Cells Detected in Peripheral Blood of 6 Subjects with Donor-Specific

Donor NAK-NK cells in peripheral blood express high levels of CD16 and Ki-67 (not shown)

Figure 4. Patient 007 (MM): Donor Cells Detected in Blood and Bone Marrow by Flow Chimerism (Donor is HLA-A2+). Flow plots are gated on CD56+CD3- NK Cells

Figure 5. Patient 002 (NHL-follicular): Donor Cells Detected in Blood by Flow Chimerism (Donor is HLA-A24+). Flow plots are gated on CD56+CD3- NK Cells

Safety

- No Dose Limiting Toxicities
- No GVHD, tumor lysis syndrome, or neurotoxicity reported
- Hematologic toxicities: grade 3 (n=3) and grade 4 (n=1)
- Non-hematologic toxicities attributed to cyclophosphamide/fludarabine, most grade 1/2
- Bradycardia reported in one patient, attributed to elotuzumab
- Cytokine release syndrome (grade 3) in one patient with MM, presented on d18 with fever, hypoxemia and hypotension, promptly responded to tocilizumab
- One patient death due to E. coli sepsis

Table 3. Adverse Events

Hypertension	7	4
Neutrophil count decreased	4	4
Anemia	4	3
Platelet count decreased	4	3
White blood cell decreased	3	3
Fever	8	2
Dyspnea	5	2
Hypophosphatemia	3	2
Нурохіа	2	2
Hypotension	5	1
Upper respiratory infection	5	1
Edema	3	1
Sinus tachycardia	3	1
Hyponatremia	2	1
Abdominal pain	1	1
Atrial fibrillation	1	1
Cytokine release syndrome	1	1
E. coli Pneumonia	1	1
Febrile neutropenia	1	1
Hyperkalemia	1	1
Pulmonary edema	1	1

Grade 3/4 adverse events possibly, probably or definitely related to therapy reported in at least one patient

6 patients with NHL evaluable for response:

- 3 patients with complete response (CR) (2 FL, 1 TL); 2 patients subsequently underwent allogeneic stem cell transplant
- 1 patient with partial response (~75% reduction) (DLBCL)
- 2 patients with progressive disease (PD) (tDLBCL, DLBCL)
- 6 patients with MM evaluable for response: heavily pretreated with extensive disease 1 patient with CR (extramedullary disease)
- 2 patients with stable disease
- 3 patients with progressive disease (PD)
- 1 patient not evaluable
- 1 patient pending response assessment

Figure 6. Swimmer Plots Patients with Non-Hodgkin Lymphoma Legend 002 (FL) **Cohort/Dose Level** 1 2 3 Complete Response Partial Response Stable Disease

FL: Follicular lymphoma; tDLBCL: transformed diffuse large B cell lymphoma; DLBCL: diffuse large B cell lymphoma 1 additional patient with MM pending d28 evaluation

Months

Figure 7. Patient 002

**Patient discontinued prior to evaluation

1 additional patient pending d28 evaluation

*Continued tumor shrinkage

Pt 002: 67-year-old man with Stage IVA follicular lymphoma diagnosed in 2012, previously treated with multiple rituximab-containing regimens (R-CVP, R-bendamustine, R-ICE, R-EPOCH) presented with bulky adenopathy in upper and lower abdomen and bone marrow involvement

Received NAM-NK dose level 1: complete response, confirmed by biopsy

Figure 8. Patient 004

Pt 004: 60-year-old man with Stage IV follicular lymphoma diagnosed in 2015, previously treated with R-bendamustine, R-CHOP, and R-ICE.

Received NAM-NK dose level 2: complete response. Went on to allogeneic bone marrow transplant.

Figure 9. Patient 010

Allogeneic Transplant

Continued Response

Pt 010: 70-year-old woman with multiple myeloma diagnosed in 2012, previously treated with lenalidomide/bortezomib/dexamethasone; lenalidomide/bortezimib; pomalidomide/dexamethasone. and autologous stem cell transplant; presented with extramedullary disease.

Received NAM-NK dose level 2: complete response

Conclusions

- NAM-NK was well-tolerated without infusion toxicity or DLTs
- Maximum target dose of 2 x 10⁸ cells/kg was achieved
- NAM-NK cells were detectable in blood and bone marrow, and
- exhibited proliferative phenotype and cytotoxic function
- Clinical activity was observed, including complete responses in patients with lymphoma and myeloma
- Additional patients will be treated at the MTD to further evaluate safety and efficacy
- Future directions include cryopreservation and exploration of multiple treatment cycles

Acknowledgements

ClinicalTrials.gov Identifier: NCT03019666 Supported by Gamida Cell, Ltd

Disclosure notice:

Bachanova: Gamida Cell: research funding; UNUM: research funding; Novartis: advisory board and research funding; GT Biopharma: research funding

Miller: GT Biopharma Inc, consultant, contracted research, intellectual property rights and research funding; Dr. Reddy's Laboratories, scientific advisory board, consultancy; Onkimmune, scientific advisory board; CytoSem, scientific advisory board; Fate Therapeutics, consultant,

contracted research, intellectual property rights and research funding Weisdorf: Incyte: research funding

Brachya: Gamida Cell, employee: ownership interest and salary Peled: Gamida Cell, employee: ownership interest and salary

Cooley: Fate Therapeutics, employee: salary McKenna, Luo, DeFor, Warlick: Nothing to Disclose

1. Horwitz, M., et al JCI 12:3121, 2014.

2. Peled, T., Brachya, G., et al: Blood 2017, 130:657.