NiCord Single Unit Expanded Umbilical Cord Blood Transplantation: Final Results of a Multicenter Phase I/II Trial

Mitchell E. Horwitz, MD
Duke University Medical Center
Durham, NC

Guillermo Sanz, MD
Hospital Universitario y Politécnico La Fe
Valencia Spain

Gamida Cell
Jerusalem, Israel
Umbilical Cord Blood Stem Cell Grafts

• Advantages
 – Readily available stem cells source
 – Tolerance across HLA barriers
 – Nearly 30 year of experience
 – Less chronic GvHD vs. Matched Unrelated donor
 • Eapen M et al Lancet 2010
 – Potent anti-tumor activity
 • Milano F et al NEJM 2016

• Disadvantages
 – Low stem cell dose
 • Delayed hematopoietic recovery
 • Delayed immunologic recovery
 – Increased resource utilization

Potential Solution

Ex-vivo Expansion Cord Blood Stem Cells
NiCord Stem Cell Expansion Technology

- An ex vivo expanded cell product derived from a umbilical cord blood
- Developed in the laboratories of Gamida Cell Ltd.
- Culture system: Nicotinamide + TPO, IL-6, FLT-3 ligand and SCF

Affect on CD34+ Stem Cells
- Preserves gene expression profile similar to non-cultured cells
- Modulates cellular metabolism and transport related genes
- Increase in stress resistance
- Increase in stem cell engraftment efficiency
Pilot Trial: NiCord + Unmanipulated Double Cord Blood Transplantation

- 11 patients, myeloablative conditioning (2010-2012)
- NiCord expanded graft + Unmanipulated cord blood graft
- NiCord engraftment dominant in 8 of 11 recipients
- Shortened time to hematopoietic recovery (compared to historical controls)
 - Neutrophils >500 (mean days): 25 → 11
 - Platelets > 20K (mean days): 41 → 31
 - 3 year overall survival: 67%
 - 3 year progression-free survival: 67%
- NiCord derived hematopoiesis stable and robust
 - Median f/u 6yrs (range 5-7 years)

Patrick Stiff, MD Loyola University, Chicago
Horwitz et al. JCI 2014
Can NiCord be used as a single, stand-alone graft?
Phase I/II Multicenter Study of NiCord as a Stand-alone Graft

Primary Objective
1. To assess the cumulative incidence neutrophil engraftment at 42

Design
- 12-65 years old
- AML, ALL, MDS, CML, Lymphoma
- Myeloablative Conditioning regimen;
 - Regimen A: TBI 1350cGy, Fludarabine and Cyclophosphamide/Thiotepa
 - Regimen B: Thiotepa, Busulfan, Fludarabine
 - Regimen C: Clofarabine, Fludarabine, Busulfan
- GvHD prophylaxis
 - Mycophenolate mofetil, Tacrolimus or cyclosporine
- 13 sites: US, EU, Asia
Protocol Schema

NiCord Unit
- Shipped to Centralized Manufacturing facility

CD 133+ Cell Selection
- CD133 Negative Fraction
- CD133+ Fraction

Non-cultured fraction (NF)
- Lymphocyte Containing Cryopreserved

Cultured fraction (CF)
- Cultured 21±2d in cytokines + Nicotinamide
- Transported Frozen to Site

NiCord Graft
- Myeloablative Conditioning
- MMF
- Tacrolimus

Day 0
- +60
- +180

American Society of Hematology
Demographic and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>NiCord N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of evaluable patients</td>
<td>36 (100)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>13-18</td>
<td>4 (11)</td>
</tr>
<tr>
<td>19-39</td>
<td>11 (31)</td>
</tr>
<tr>
<td>40 +</td>
<td>21 (58)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>44 (13-63)</td>
</tr>
<tr>
<td>HLA Match Score</td>
<td></td>
</tr>
<tr>
<td>4/6</td>
<td>26 (72)</td>
</tr>
<tr>
<td>5/6</td>
<td>8 (22)</td>
</tr>
<tr>
<td>6/6</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Conditioning Regimen</td>
<td></td>
</tr>
<tr>
<td>Regimen A (TBI, Fludarabine +/- Cy or Thiotepa)</td>
<td>15 (42)</td>
</tr>
<tr>
<td>Regimen B (Thiotepa, Busulfan, Fludarabine)</td>
<td>19 (53)</td>
</tr>
<tr>
<td>Regimen C (Clofarabine, Fludarabine, Busulfan)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>75 (41-125)</td>
</tr>
</tbody>
</table>
Demographic and Other Baseline Characteristics

<table>
<thead>
<tr>
<th>Primary Diagnosis</th>
<th>NiCord N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
<td></td>
</tr>
<tr>
<td>High risk first complete morphologic remission (CR1)</td>
<td>9 (25)</td>
</tr>
<tr>
<td>Second Remission</td>
<td>5</td>
</tr>
<tr>
<td>Acute Myelogenous Leukemia</td>
<td>17 (47)</td>
</tr>
<tr>
<td>First complete morphologic remission (CR1)</td>
<td></td>
</tr>
<tr>
<td>Second Remission</td>
<td>13</td>
</tr>
<tr>
<td>Myelodysplastic Syndrome</td>
<td>7 (19)</td>
</tr>
<tr>
<td>Chronic Myelogenous Leukemia</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Hodgkin’s Disease</td>
<td>1 (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease Risk</th>
<th>NiCord N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>8 (22)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>15 (42)</td>
</tr>
<tr>
<td>High</td>
<td>13 (36)</td>
</tr>
</tbody>
</table>
Graft Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Median Cell Dose (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC (x 10e7/kg)</td>
<td>2.4 (1.8-3.6)</td>
</tr>
<tr>
<td>CD34+ (x 10e8)</td>
<td>3.7 (2.3-7.8)</td>
</tr>
<tr>
<td>CD34+ (x 10e6/kg)</td>
<td>0.13 (0.08-0.25)</td>
</tr>
<tr>
<td>Post-NiCord Expansion</td>
<td>4.4 (1.5-13.1)</td>
</tr>
<tr>
<td>33-Fold Expansion</td>
<td></td>
</tr>
<tr>
<td>4.4 (1.5-13.1)</td>
<td></td>
</tr>
<tr>
<td>0.2 (0.1-0.4)</td>
<td></td>
</tr>
</tbody>
</table>

*As reported by cord blood bank

American Society of Hematology
Standard Myeloablative Umbilical Cord Blood Transplantation CIBMTR Matched Control Cohort

<table>
<thead>
<tr>
<th>Selection Criteria Applied Sequentially</th>
<th>Number of Matching Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBU transplants from 2010 to 2013*</td>
<td>1037</td>
</tr>
<tr>
<td>Age 13-63</td>
<td>820</td>
</tr>
<tr>
<td>Myeloablative conditioning</td>
<td>519</td>
</tr>
<tr>
<td>Disease status similar to NiCord patients</td>
<td>371</td>
</tr>
<tr>
<td>Cell count criteria</td>
<td>184</td>
</tr>
<tr>
<td>HLA match criteria</td>
<td>153</td>
</tr>
<tr>
<td>Performance score criteria</td>
<td>146</td>
</tr>
<tr>
<td>Final sample size</td>
<td>146</td>
</tr>
</tbody>
</table>

*Double Cord-80% Single Cord-20%
The data presented here include data obtained from the Center for International Blood and Marrow Transplant Research.
NiCord Phase I/II Outcome

Non-relapse Mortality

Year 2 Estimate: 23.8%
(95% CI 10.9, 39.5)

Relapse

Year 2 Estimate: 33.2%
(95% CI 15.9, 51.6)
NiCord Phase I/II Outcome: Disease-free and Overall Survival

Estimated Disease-Free Survival
1yr: 49.1% (95% CI 32.2%, 64.8%)
2yr: 43.0% (95% CI 24.2%, 60.5%)

Estimated Overall Survival
1yr: 51.2% (95% CI 32.9%, 66.8%)
2yr: 51.2% (95% CI 32.9%, 66.8%)

Median Follow-up (survivors); 14 month (5-37 months)
NiCord Phase I/II; Acute Graft vs. Host Disease

Grade II/IV

Cumulative Incidence of Grade II-IV Acute GvHD

Day 100 Estimate: 44.4% (95% CI: 27.7%, 59.9%)

Grade III/IV

Cumulative Incidence of Grade III-IV Acute GvHD

Day 100 Estimate: 11.1% (95% CI: 3.4%, 23.8%)
NiCord Phase I/II: Chronic Graft vs. Host Disease

Mild/Moderate/Severe

Month 12 Estimate 40.5%
(95% CI: 23.7%, 56.7%)

Cumulative Incidence

Year 1 Estimate 9.8%
(95% CI: 2.4%, 23.7%)

Year 2 Estimate 9.8%
(95% CI: 2.4%, 23.7%)

Month 24 Estimate 9.8%
(95% CI: 2.4%, 23.7%)

Moderate/Severe

N at Risk
36
14
4
0
0

N at Risk
36
22
11
6
4

Months Post Transplant
Immune Reconstitution: NiCord vs. Unmanipulated Dual Cord

*Barker et al: Results of a prospective multicenter, myeloablative adult double-unit cord blood transplantation trial N=56 Brit J Haem 2015
NiCord Single Cord Phase I/II Study Results Summary; n=36

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to neutrophil engraftment (median)</td>
<td>11 days (range 6-26)</td>
</tr>
<tr>
<td>Time to platelet engraftment (median)</td>
<td>34 days (range 25-96)</td>
</tr>
<tr>
<td>aGvHD grade II-IV and III-IV at 100 days</td>
<td>44% and 11%</td>
</tr>
<tr>
<td>cGvHD Moderate-Severe at 1 year</td>
<td>10%</td>
</tr>
<tr>
<td>Graft Failure</td>
<td>Primary-1, Secondary-2 (HHV6-1, Adenovirus-1)</td>
</tr>
<tr>
<td>Chimerism (engrafted patients n=34)</td>
<td>Full donor (>95%); 97% Mixed chimerism; 3%</td>
</tr>
<tr>
<td>Transplant Related Mortality at 1 year</td>
<td>20%</td>
</tr>
<tr>
<td>Disease-free/Overall Survival at 1yr</td>
<td>49%/51%</td>
</tr>
</tbody>
</table>

Median follow-up of survivors: 14 months (range 5-37)
Conclusions

• NiCord
 – Median 10 day reduction in time to neutrophil engraftment
 – Median 12 day reduction in time to platelet engraftment
 • Compared to standard myeloablative umbilical cord blood transplantation (CIBMTR)
 – Robust and durable engraftment > 7 years
 – Elimination of need for dual umbilical cord blood grafts
 – Reduced risk of bacterial infections
 – Fewer days in hospital during first 100 days post transplantation
 • Compared to single center matched historical control cohort
 – Anand/Horwitz et al. BBMT 2017
NiCord vs. Standard Umbilical Cord Blood Transplantation Phase III Registration Trial (FDA and EMA)

- NiCord vs. Standard (single or double) UCBT
- Myeloablative conditioning
- Sponsor: Gamida Cell
- USA, Europe, Asia
- Open for accrual

Adult patients with high-risk hematological malignancies

Primary endpoint
Time to engraftment
Acknowledgments

Gamida Cell Ltd.
Tony Peled
Ronit Simantov
David Snyder
Einat Galamidi
Iddo Peled
Efrat Landau
Dorit Harati
Etty Friend
Manufacturing team

Co-Investigators
G. Sanz, P. Montesinos- Valencia
Pau Montesinos- Valencia
P. Stiff- Chicago
D. Valcarcel- Barcelona
M. Jagasia- Nashville

Patients and Families
Emmes Corporation
Steven Wease

Sheba Medical Center
Laurence Friedman

American Society of Hematology